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ABSTRACT

Numerical methods may require derivatives of functions whose values are known only on
irregularly spaced calculation points.  This document presents and quantifies the performance
of Moving Least-Squares (MLS), a method of derivative evaluation on irregularly spaced
points that has a number of inherent advantages.  The user selects both the spatial dimension
of the problem and order of the highest conserved moment.  The accuracy of calculations is
maintained on highly irregularly spaced points.  Not required are creation of additional
calculation points or interpolation of the calculation points onto a regular grid.
Implementation of the method requires the use of only a relatively small number of
calculation points.  The method is fast, robust and provides smooth results even as the order
of the derivative increases.



4

This page intentionally left blank.



5

CONTENTS

1 INTRODUCTION ................................................................................... 7

2 FORMULATION .................................................................................... 9

3 RESULTS ............................................................................................ 15

3.1 Test Parameters ...............................................................................................15
3.2 Application Results ..........................................................................................21

3.2.1 Number of Nearest Neighbors N ...........................................................21

3.2.2 Resolution sN .........................................................................................30

3.2.3 Scaled Isolation Distance D ..................................................................40

3.2.4 Gaussian Radius � ..................................................................................48
3.2.5 Execution Time .......................................................................................57

4 SUMMARY .......................................................................................... 61

REFERENCES ........................................................................................ 65



6

This page intentionally left blank.



7

1 INTRODUCTION

The origin of least-squares methods can be traced back to the beginning of statistical
methods—perhaps to the first time a mean was calculated on a set of data.  The notion of
moving least-squares (MLS), analogous to a moving average, in which a defined subset of
data is used for each data reducing calculation, also has an extensive history.  The use of
MLS in one-dimensional digital filters, for example, is well established, cf. [1][2][3].
Shepard [4] first applied the method of MLS to the generation of two-dimensional
interpolants in a limited low-order case and Lancaster and Salkaukas [5] give a general
higher-order approach of the method.  Armentano and Duran [6] have recently given error
estimates for one-dimensional MLS approximations of functions and their 1st and 2nd order
derivatives.  As an alternative to finite-element methods, Nayroles et al. [7] and Belytschko
et al. [8] adapted MLS approaches to meshless Galerkin approximations; a general overview
of meshless methods including MLS is given by Belytschko, et al. [9].  Variations of MLS
within and across disciplines are referred to by different names; in meshless methods names
include the Diffuse Element Method (DEM) [7], the Element-Free Galerkin (EFG) method
[8] and Partition of Unity Method (PUM) [10][11]; in data filter methods, names include
Savitzky-Golay filters [1], and Digital Smoothing Polynomials (DISPO) [3].

The present work is motivated by the development of a three-dimensional, vorticity-
based, Lagrangian approach to fluid dynamics, a field to which MLS has been introduced
relatively recently by Marshall and Grant [12].  Neither analytical error bounds for the MLS
approximation of derivatives of multi-dimensional equations nor extensive analysis of the
behavior of MLS estimations in such applications exist in the literature.  This paper presents
an MLS formulation for multi-dimensional applications and presents a detailed investigation
of an MLS three-dimensional application including errors in the approximation of 1st, 2nd and
3rd order derivatives.

The governing equation for this fluid dynamics approach for a problem of
incompressible, three-dimensional fluid flow of variable density and constant viscosity
occupying a region V is given by the vorticity transport equation

ωuωωuωω �

��

�

�

��

�

�

��

21)()( ������
�

�
��
�

	
�
������
 �

��

�
p

tdt

d , (1)

where the symbol �
�

 refers to the gradient and the symbol 2
�  refers to the 2nd order

gradient, the Laplacian.  In this approach, calculation points that need not be connected by a
mesh represent function values in V.  These calculation points are advected at the local fluid
velocity and, as such, are irregularly spaced.  [The variables in equation (1) are not of
primary concern in this discussion and comprise: vorticity (ω� ), time (t), velocity ( u� ), density
( � ), pressure (p), and kinematic viscosity (� ).]  Numerical evaluation of (1) clearly requires
that the gradient and Laplacian be evaluated within V on the irregularly distributed
calculation points.
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where E
�

 is an “error” or residual vector of the original equation, x�  is a vector of
independent variables and ξy�  are vectors of the thξ  derivative of the dependent variable, cf.
[13].  This residual can be minimized using any of several methods that cause a weighted
average of the residual to vanish.  Such approaches vary only in the manner in which the
residual is weighted and include: (i) collocation, in which the actual values of the residual at
selected points are made equal to zero; (ii) Galerkin’s method, in which the integrals of the
residual weighted by selected shape functions are set to zero; (iii) a least-squares approach, in
which the integral of the square of the residual is minimized.  It cannot be said a-priori which
approach yields the most accurate solution for a given case.  Hence, selection of the approach
rests primarily on foreknowledge of the particular application or on other considerations.  For
example, the collocation approach does not require integration, providing for an easy
implementation.  However, there is no guarantee that this approach yields a solution that is
sufficiently smooth for calculations of derivatives, particularly higher order derivatives.  The
shape functions in Galerkin’s method can be used to create a symmetric coefficient matrix,
often of advantage in finite element methods.  In the present application, the MLS approach
is selected because it maintains good accuracy on irregularly spaced calculation points [12]
and because of its inherent smoothing properties.
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2 FORMULATION

The use of a Lagrangian numerical approach to solve a transport equation, such as the
vorticity transport equation (1), yields values at points Nnn ,...,1, �x� , which, in general, are
irregularly spaced.  An MLS approach is used here to evaluate the derivatives of a function,
say � �tf ,x� , at a calculation point m located at mx� .  In this method, the values nf  of � �tf ,x�

on these calculation points are interpolated locally by a polynomial in the components of the
position difference mxx ��

� .

� � � ��
�

���

k

i
mimimmm BCftq

1
,,, xxx ��� . (3)

In (3), the index m denotes the point about which the interpolation is performed, imC ,

denotes a set of k undetermined coefficients of the polynomial, and � �mimB xx ��

�,  are the
associated basis functions.  The value of k is the total number of combinations with repeat

R
�  [14] possible for the higher order terms in dimensions d and order h, given by
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The prescribed order h polynomial fit is equal to the highest moment conserved by the basis
functions � �mimB xx ��

�, .  The MLS approach using a polynomial fit of prescribed order h

(calculated with a sufficient number of calculation points) represents an hth order function
exactly and is referred to as an hth order MLS fit.  The k basis functions are generated using
the relationship
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where ki ,...,1� , and cba ,,  are whole numbers with jcba ��� , hj ,...,1� .  For the
three-dimensional, second order case 92,3 �

�� hd
k  and the associated basis functions are
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The parameter mR  is a length scale associated with the calculation point m, and can be
considered an effective point “radius”.  The value of mR  can be set for each point m as a
function of the local average calculation point spacing or can simply be based on typical
spacing between calculation points.  Either approach is used to ensure that for small
difference components the basis function values do not approach the computer’s floating-
point precision (typically 610�  for single precision or 1210�  for double precision).

Implementing the MLS method in higher or lower dimensions or other orders is
straightforward.  For example, to attain third-order polynomial fit )3( �h  in three
dimensions )3( �d  requires 19 higher order terms )19( 3,3 �

�� hd
k .  The corresponding

basis functions are given by those in equations (6) with additional functions given by
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The coefficients imC ,  of the polynomial (3) are obtained by a localized least-squares
procedure, in which the “error” mE  is expressed as

2

1
)],([ tqfLE nmnmn

N

n
m x��� �

�

. (8)

where N is the number of calculation points, the “nearest neighbors”, about point mx�  used in
the MLS fit.  The “localization parameter” mnL  weights the contribution of different points to
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the error mE .  The value of mnL  can be set equal to unity for the N nearest neighbors of m
and zero elsewhere or its value may be set to decay with distance from mx�  using any
convenient function.

Minimization of mE  with respect to each of the coefficients imC ,  yields a kk �

system of linear equations of the form
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j
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Solution of the system (9) yields
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ijmG  is the inverse of ijmG , .  Upon solving for coefficients imC , , the derivatives of

mf  are approximated by differentiating the polynomial fit (3).  As examples, for the three-
dimensional, second order polynomial case, the first order derivatives are given by
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and the second order derivatives are given by
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For the three-dimensional, third order polynomial case, the first and second order derivatives
are again given by equations (14) and (15) and third order derivatives are given by
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The coefficient matrix in equation (9) can be solved using a variety of linear equation
solvers including Gauss-Jordan elimination, Gaussian elimination, LU decomposition and
Cholesky decomposition.  However, under typical conditions the condition number of the
coefficient matrix may become very large.  Any matrix is singular if its condition number is
infinite and can be defined as ill-conditioned if the reciprocal of its condition number
approaches the computer’s floating-point precision.  In such cases, the cited solvers may fail
or may return a highly inaccurate solution. To avoid such numerical problems, a singular
value decomposition (SVD) linear equation solver is sometimes recommended for use in
conjunction with the MLS method.  The SVD solver identifies equations in the matrix that
are, within a specified tolerance, redundant (linear combinations of the remaining equations)
and eliminates them, thereby improving the condition number of the matrix.  The reader is
referred to reference [15], Chapter 15 for a helpful discussion of SVD pertinent to linear
least-squares problems.  To examine their relative merits, two linear equation solvers are
used in this report: Gauss-Jordan elimination (GJE) with full pivoting, a direct solver that is
robust and relatively simple; SVD, a solver that remains robust even for initially ill-
conditioned sets of linear equations.
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3 RESULTS

This section extensively explores a Moving Least Squares application in order to gain
working knowledge of the approach and so develop helpful comments, small hints and
general advice to make MLS a practical tool.

3.1  Test Parameters

The MLS approach is tested by using it to evaluate the 1st, 2nd and 3rd derivatives of a
three-dimensional Gaussian test function f given by

� �
� � � � � �

�
�
�

�
�
�
�

� �����
�	 2

222

δ
5.05.05.0exp,, zyx

zyxf . (17)

The parameter δ  is the Gaussian “radius” and determines the width of the single “wave” in
this smoothly varying function.  As δ  decreases, the function “narrows.”  Before introducing
a graph of this function, a “thin center slice” will be defined as a nearly one-dimensional
function space along the x-axis within the region )5.0()5.0( xyx ������  and

)5.0()5.0( xzx ������ , where x�  is the average spacing between calculation points.

Figure 1 presents a graph of the Gaussian function given by equation (17) on the test
function space used throughout this section, a 111 ��  cube extending from the origin to 1 on
each Cartesian axis.  The radius used for this graph is given by 035.0δ2

� .  This radius is
used for all tests within this section except for tests on the effect of varying the radius.  While
this radius yields the widest Gaussian function considered, this function itself is not of
primary interest; its derivative functions are.  The waves of higher order derivatives of this
function become increasingly narrow with the ratio of “wave amplitude” to “wave width”
becoming increasingly severe.  The test function gradient f�  is shown in Figure 2, the

Laplacian f2
�  in Figure 3, and 3rd order gradient f3

�  in Figure 4.  The wave amplitude to
width ratio �  can be seen to increase rapidly from approximately 10��  for f�  to a value

of approximately 325��  for f2
�  and then to a value of approximately 2400��  for

f3
� .

Because MLS is an approach applied to solution techniques in which function values
are known generally on irregularly spaced calculation points, a topic of interest is the effect
of the randomness of the point arrangement on the accuracy and stability of the result.
Toward this end, functions are tested using both evenly spaced calculation points with
uniform spacing x�  and with randomized calculation points with average local spacing x� .
The randomized point locations are generated by perturbing the uniformly spaced points in
each Cartesian direction by x�α  where α  is a random number in the range εα0 �� .
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Figure 1.  A thin center slice of the Gaussian test function f with 035.0δ2
� .

x
0 0.25 0.5 0.75 1

-6

-4

-2

0

2

4

6

� f

Figure 2.  A thin center slice showing the gradient f�  of the Gaussian test function f with

035.0δ2
� .
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Figure 3.  A thin center slice showing the Laplacian f2
�  of the Gaussian test function f with

035.0δ2
� .

x
0 0.25 0.5 0.75 1

-750

-500

-250

0

250

500

750

�
3 f

Figure 4.  A thin center slice showing the third order gradient f3
�  of the Gaussian test

function f with 035.0δ2
� .
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Results of applying maximum randomization perturbations of 05.0ε �  and 50.0ε �
on approximately 1000 point positions are shown in Figure 5.  The randomization with

05.0ε �  is barely detectable by eye whereas the randomization with 50.0ε �  is plainly
evident.  Randomization with 50.0ε �  represents the maximum randomization possible such
that the average spacing local to any calculation point remains equal to the uniform spacing

x� .

The effective point radius mR  in equation (5) is set equal to x� .  While the effect of
changing mR  is not explicitly explored, informal observation shows varying this parameter
within an order of magnitude greater or less than x�  has virtually no effect on the MLS
results presented.

The value of mnL  is equation (8) is set equal to unity for the N nearest neighbors of m
and zero elsewhere.  The effect of this parameter is a complex consideration.  In general,
one-dimensional MLS fits, as are used in digital signal processing, generate smoother
function approximations nf  (by removing high frequency variations in the sample function)
for mnL  functions that decay with distance from mx� .  The interested reader is referred to
reference [3], Chapter 5, for an introductory discussion of this topic.

The parameters sN  and N  are used in investigating resolution effects later in this
section.  The number of points per side of each face of the 111 ��  test space is given by sN .

The total number of points 3
sNN �  resolving the three-dimensional functions is set by

varying sN  within the range 5121 �� sN  such that the range of N  spans nearly 1.5
magnitudes, 1326519261 �� N .

A “scaled isolation distance” D used in later tests is introduced here.  The distance
between an isolated calculation point and its nearest neighbor is measured as the scaled
isolation distance D times the average calculation point spacing x� .

Two parameters are calculated for comparison of test results.  One parameter is maxC ,
the maximum condition number of the coefficient matrix ijmG ,  of equation (9) prior to
elimination of redundant and nearly redundant equations using SVD.  The other parameter is
an 2�  norm error, a scaled rms (root-mean-square) calculation given by

� �� �
� � � �� ��

�

���

N

i
iirms gg

Ng
E

1

21
max

1 xx
x

��

�
. (18)

where g  and g �  represent the analytic and calculated values, respectively, of f� , f2
� , or

f3
� .
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For all tests, floating-point calculations are performed using double precision.  The
performance of MLS using either the GJE or SVD linear equation solver is quantified by
evaluating graphs of calculation point values and by evaluating the error and the condition
number, summarized in Table 1, as a function of the independent parameters summarized in
Table 2.

x

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

y

x

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

y

Figure 5.  Approximately 1000 point positions randomized using different maximum
perturbation amplitudes ε .

(a)
05.0ε �

(b)
50.0ε �
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Description

maxC Maximum condition number.

rmsE Scaled rms calculation given by equation (18).

Table 1.  Values evaluated in the MLS tests.

Description Range

N Number of nearest neighbors used in the MLS fit. 1001 �� N

sN Number of calculation points per side of each face of the
test volume.  The test volume is resolved by the total
number of calculation points 3

sNN � .

5121 �� sN

ε Maximum randomization perturbation.  Calculation
points of uniform spacing x�  are perturbed in each
Cartesian direction by x�α  where α  is a random
number in the range εα0 �� .

50.0ε0 ��

D Scaled isolation distance: the distance between an
isolated calculation point and its nearest neighbor is
measured as D times the average calculation point
spacing x� .

101 �� D

δ The radius of the Gaussian test function f given by
equation (17).

035.0δ005.0 2
��

Table 2.  Summary of parameters varied in MLS tests.
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3.2  Application Results

The titles of the subsections within this section indicate the parameter that is the focus
of tests within that subsection.  This primary parameter is varied and results presented and
discussed.  Also, generally the two different linear equation solvers are used and
supplementary parameters such as the maximum randomization perturbation ε  and the MLS
order of fit h are varied to help investigate the effects of the primary parameter of a
subsection.  Use of the GJE solver is explicitly stated; otherwise, use of the SVD solver is
implied.  A short summary of main results appears at the end of each subsection.

3.2.1  Number of Nearest Neighbors N .

The first (and last) consideration in this application is choosing the number of nearest
neighbors N of equation (8) to use in the MLS fit.  For this series of tests, the resolution is set
to 51�sN .  Beginning with a 1st order MLS fit and using either the GJE solver or the SVD
solver, the condition number maxC  and the error rmsE  are calculated as a function of the
number of nearest neighbors N for uniformly spaced calculation points ( 0ε � ) and for the
randomized points with 50.0ε � .  Figure 6 presents the results for these tests using the
uniformly spaced calculation point and randomized points, respectively.  Randomized points
are seen to “smooth out” the coefficient condition numbers maxC ; with decreasing N, maxC

increases abruptly for uniformly spaced points and increases gradually for randomized
points.  The number of nearest neighbors N required to achieve the lowest possible error

rmsE  is slightly greater for the randomized points.  The results using the GJE solver are
indistinguishable from those using the SVD solver presented in Figure 6(a) and 6(b) in the
region where the condition number maxC  is bounded to values 1210��maxC .  For uniformly
spaced calculation points, the GJE solver abruptly fails (for 5�N ) due to the matrix
becoming effectively and abruptly singular.  For the randomized points, as the condition
number maxC  quickly increases, the GJE solver generates large rmsE  errors (for 54 �� N )
and then fails (for 3�N ) as maxC  becomes unbounded.  Selected results using the GJE
solver are included in Figure 6(b) to highlight the difference in behavior between the two
solvers.

For uniformly spaced and randomized calculation points, the SVD solver does not fail
as the condition number maxC  increases.  Rather, the SVD solver provides solutions with the
smallest possible least-square coefficient values (as opposed to values approaching infinity!).
The errors rmsE  of these solutions increase substantially and gradually with decreasing N.
Lines drawn through the error values rmsE  are broken into two parts corresponding to
regions in which the condition number is sharply increasing or nearly constant.  In the region
of sharply increasing condition number maxC , error rmsE  increases with decreasing N at
slightly greater than 2nd order (as labeled) for the uniformly spaced calculation points and
with 2nd order (not labeled) for the randomized points.
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Figure 6.  Results for the 1st order MLS fit.  The condition number maxC  (             ) and the
error rmsE  for the gradient  (SVD:             ; GJE:             ).
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If the basis functions for the N points were unique, the linear equations in the
coefficient matrix would be unambiguous and the condition number maxC  and the error rmsE

would remain roughly constant.  Hence, the basis functions are effectively redundant when
evaluated numerically.  The randomization of calculation point positions helps to maintain
unique contribution of the associated basis functions.  This result, while perhaps not
surprising, nonetheless communicates an uncommon knowledge: for the MLS approach, and
possibly other minimization approaches, calculating function values using randomized points
can be more accurate and more stable than using uniformly spaced points.

The number of nearest neighbors to use in the 1st order MLS fit can now be chosen
based on the presented results.  Assuming for the moment that there must be some
calculation penalty (to be evaluated later) in using more nearest neighbor calculation points
for the fit, a minimum number of points is selected that, in this case, (i) maintains an error of
approximately 210��rmsE  and (ii) avoids solving an ill-conditioned matrix.  That number is

7�N .  Using 7 points will provide a sufficient number of unique basis equations to
determine the unknown MLS coefficient matrix of equation (9) for this application under all
conditions.

For similar conditions, 1st and 2nd order gradients are calculated using a 2nd order
MLS fit.  Comparing the condition numbers maxC  of results for uniformly spaced calculation
points with those for randomized points, shown in Figure 7, the tendency of randomization is
again to smooth out (lessen the magnitude and make more gradual the change in) the
condition numbers maxC .  In the region where the condition number maxC  is bounded to

values 1210��maxC , the results using the GJE solver are indistinguishable from those using
the SVD solver presented in Figure 7(a) and Figure 7(b).  For uniformly spaced calculation
points, the GJE solver fails (for 22�N ) as the matrix abruptly becomes singular, consistent
with the 1st order MLS results.  The condition number maxC  when using randomized points
quickly increases and the GJE solver generates large rmsE  errors (for 10�N  and 11�N )
and then fails (for 9�N ) as maxC  increases without bound.  In contrast, the SVD solver
again provides solutions with increased rmsE  errors for poorly conditioned (relatively large

condition numbers but 1210�maxC ) and even for ill-conditioned matrices ( 1210�maxC ).
To demonstrate this change in behavior between results generated using the two solvers,
selected results using the GJE solver are included in Figure 7(b).
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Figure 7.  Results for the 2nd order MLS fit.  The condition number maxC  (             ) and the
error rmsE  for the gradient  (SVD:             ; GJE:             ) and the Laplacian (SVD:             ;
GJE:             ).
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Figure 8.  Results using the same parameters as those of Figure 7 except for randomization,
which is reduced to 05.0ε � .  The condition number maxC  (             ) and the error rmsE  for
the gradient (SVD:             ; GJE:             ) and the Laplacian (SVD:             ; GJE:             )
for the 2nd order MLS fit.

For the 2nd order fit and randomized calculation points, if the criterion is simply that
error rmsE  remains below 210�  for uniform or randomized calculation points, then 14�N

is adequate.  Let the acceptable minimum number of nearest neighbors for a 2nd order MLS
fit using randomized points be 14�minN  for future reference.  If the criterion is added to
avoid solving an ill-conditioned matrix, a value of 23�N  might be chosen.  Let the
acceptable maximum number of nearest neighbors for a 2nd order MLS fit using randomized
points be 23�maxN .  Selecting the actual value of N to be used will be deferred until after
review of test results presented in succeeding subsections.  Formally applying the minimum
and maximum nearest neighbors criteria to the 1st order MLS fit discussed above gives

7�� maxmin NN  for that case.

Randomization with 50.0ε �  shown in Figure 7(b) is reduced to 05.0ε �  and shown
in Figure 8 to gage the effect of the degree of randomization.  The trends are similar in these
figures: even minimal randomization smoothes the condition number maxC ; error rmsE

values are in close agreement between the figures using either the GJE or SVD solvers.
Considering the region of greatest interest where the lowest number of nearest neighbors N
provides the lowest error rmsE , a severe reduction in condition number maxC  is achieved by
randomizing calculations points even slightly while there is only a small and gradual change
in the rmsE  errors as randomization is increased.  As with the greater randomization, rmsE

errors when using the GJE solver are indistinguishable from those when using the SVD
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solver in the region where the condition number is bounded to values 1210��maxC .
Included in Figure 8 are selected GJE results to show the divergent behavior of the two
solvers.

The 1st, 2nd and 3rd order gradients are next calculated using a 3rd order MLS fit.
These results are presented in Figure 9.  These results, along with the 1st and 2nd order MLS
fit results, indicate that for randomized calculation points the reducing and smoothing of
condition numbers maxC  increases with the order of the MLS fit.   Furthermore, these results
support the statement that the higher order basis functions are more likely to be nearly
redundant.  In contrast to the 1st and 2nd MLS order fit results, the minimum number of
nearest neighbors N required to achieve the lowest possible error rmsE  is less for randomized
calculation points.

The GJE solver results are indistinguishable from those presented for the SVD solver
in Figure 9(a) and Figure 9(b) in the region where the condition number is bounded to values

1210��maxC , similar to the results for lower order MLS fits.  However, in contrast to the
previous results, the condition number does not abruptly become unbounded for uniformly
spaced calculation points (rather, it quickly grows to approximately 1710 ).  As a result, the
GJE solver does not abruptly fail; the error rmsE  increases quickly over the range

7540 �� N  and then fails at 40�N .  Using randomized points, the condition number
maxC  quickly increases and the GJE solver generates large rmsE  errors (for 2014 �� N )

and eventually fails as maxC  increases without bound.  In contrast, the SVD solver again
provides solutions with increased rmsE  errors for poorly conditioned and ill-conditioned
matrices.  The difference in behavior between results generated using the two solvers is
shown graphically by the selected GJE solver results included in Figures 9(a) and 9(b).

As with lower order MLS fits, the SVD solver provides accurate solutions for a range
of poorly conditioned and ill-conditioned matrices for the 3rd order fit.  If the criterion in
setting N for the 3rd order fit is simply that the error rmsE  be below 210�  for uniformly
spaced or randomly spaced calculation points, then 40�N  is satisfactory.  Let the
acceptable minimum number of nearest neighbors for a 3rd order MLS fit be 40�minN .  If
the criterion is again added to avoid solving an ill-conditioned matrix, a value of 76�N
might be chosen.  Let the acceptable maximum number of nearest neighbors for a 3rd order
MLS fit be 76�maxN .  As with the 2nd order MLS fit, selecting the actual value to be used
will be deferred until after review of test results presented in succeeding subsections.



27

N
20 40 60 80 100

10-5

10-3

10-1

101

103

105

107

109

Cmax

Erms

10

Slope=-1.4

Slope=1.0

Slope=-1.4

N
20 40 60 80 100

10-5

10-3

10-1

101

103

105

107

109

Cmax

Erms

10

Figure 9.  Results for the 3rd order MLS fit.  The condition number maxC  (            ) and the
error rmsE  for the gradient  (SVD:             ; GJE:             ), the Laplacian (SVD:             ;
GJE:             ) and the 3rd order gradient (SVD:             ; GJE:             ).

(a)
uniformly

spaced
points

(b)
randomized

points
50.0ε �



28

In Figure 9(a), the error in the Laplacian using very few nearest neighbors is seen to
be markedly better than that of the 1st and 3rd order gradients for the case of uniformly spaced
calculation points.  This experience of an approximation yielding an exceptionally higher
order of approximation of a given function occurs in computational approaches employing
grids with uniformly spaced calculation points.  Such a gift is explained by the “canceling
out” of terms of higher order than those calculated in the approximation, producing an
effectively higher order approximation.  Further details of such occurrences are not within
the scope of this MLS investigation and this result will simply be accepted with equanimity.

The value of N fixes the volume of a sphere, the “MLS window,” circumscribing the
N nearest neighbors.  An effective radius r of this MLS window can be quickly determined

from the relation � � 33

3
4

rxN ��� , where the average calculation point spacing is given by

1
1
�

��

sN
x .  Hence,

1
620.0

3/1

�

�

sN

N
r . (19)

Therefore, the size of MLS window changes by nearly a factor of 4 over the range tested for
the 1st and 2nd order MLS fits and by approximately a factor of 2 for the 3rd order fits.  The
insensitivity of rmsE  to the MLS window size is observed in the presented results; with
increasing minNN � , rmsE  errors either remain fairly constant (for the 1st and 3rd order MLS
fits) or increase only slightly (for the 2nd order fit).  As the MLS fits of this section are
applied to the test function with a constant value 035.0δ � , it follows that rmsE  error is also

not very sensitive to the ratio of the length scales 
δ
r , where δ  is used here as a convenient

length scale representing the severity of the function curvature.

Subsection Summary

For the MLS fits tested with either uniformly spaced calculation points or randomized
points: (i) there is a minimum number of nearest neighbors minN  such that NNmin �

maintains error rmsE  below 210�  and a maximum number of nearest neighbors maxN  such
that NNmax �  in addition avoids an ill-conditioned MLS coefficient matrix even for
uniformly spaced calculation points, (ii) the number of nearest neighbors N  in the range

maxmin NNN ��  increases with increasing order of MLS fit, (iii) using SVD with

minNN �  the error rmsE  increases either abruptly or quickly by about 2 orders of magnitude
greater than the error with NN �min , and (iv) rmsE  errors are nearly insensitive to the size

of the MLS window as represented by the ratio of length scales 
δ
r .  The condition numbers
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maxC  (v) increase abruptly at maxNN �  for uniformly spaced points and increase gradually,
“are smoothed”, for randomized points; for orders of MLS fit greater than unity, this occurs
at N  considerably less than maxN ; (vi) this smoothing is attributed to the randomized
calculation points making possible unique contributions of the basis function to the MLS
coefficient matrix.  (vii) The values of error rmsE  and condition number maxC  are not
sensitive to the randomization within the range 50.0ε05.0 �� . (viii) The SVD solver does
not fail over the tested range 1001 �� N  of nearest neighbors used in the MLS fits.  (ix) The
GJE solver produces highly inaccurate results for a poorly conditioned MLS coefficient
matrix and fails for an ill-conditioned matrix. (x) The rmsE  errors are fairly insensitive to the
size of the MLS window. (xi) The MLS approach, a representative of residual minimization
approaches, calculates values on randomized calculation points with equal or greater
accuracy as measured by rmsE  and with greater stability as measured by maxC  than on
uniformly spaced points.
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3.2.2  Resolution sN .

The orders of accuracy of the 1st, 2nd and 3rd order MLS fits versus sN  are not 1st, 2nd

and 3rd order as might be expected.  In this subsection, the total number of points 3
sNN �

resolving the three-dimensional functions is varied from 1326519261 �� N , nearly 1.5
orders of magnitude, by varying the number of points per side sN  of the 111 ��  test space in
the range 5121 �� sN .

Using nearest neighbors 7�N , error rmsE  results for the 1st order MLS fit are
shown in Figure 10.  The order of accuracy is strongly dependent on whether the calculation
points are uniformly spaced or randomized.  The uniformly spaced points show a 2nd order
accuracy and the randomized points show only a 1st order accuracy.  The small effect of
resolution sN  on the condition number maxC  is shown in Figure 11.  The condition number

maxC  remains constant as the resolution increases using uniformly spaced calculation points
and it increases slightly as the resolution increases using randomized points.

For the 2nd order MLS fit using 14�� minNN , the order of accuracy for the gradient
is again 2nd order, shown in Figure 12.  The Laplacian shows slightly better than a 1st order
fit.  These results hold for both uniform and randomized calculation points.  The condition
numbers maxC  for the uniform and randomized cases, shown in Figure 13, are fairly
constant.  However, the condition numbers maxC  for the uniformly spaced points are about
15 orders of magnitude greater than those for randomized points, consistent with Figure 8 in
the last subsection.  Using 23�� maxNN , Figures 14(a) and 14(b) show a somewhat
reduced sensitivity to calculation point position randomization: the gradient calculation
continues to exhibit nearly 2nd order accuracy independent of randomization and only the
Laplacian calculation shows sensitivity to randomization with 1.6 order accuracy for
uniformly spaced points but only 0.4 order accuracy for randomized points.  To see if this
order of accuracy trend of decreasing sensitivity to randomization correlates to the increase
in the number of nearest neighbors N, Figure 14(c) is presented on the following page.  The
single distinction between Figures 14(b) and 14(c) is the increase in N from 23 to 32.  Indeed,
for minNN � , the order of accuracy decrease in sensitivity to calculation point randomization
is a function of N.

The condition number values change greatly when varying the number of nearest
neighbors used in the 2nd order MLS fit from 14�� minNN  to 23�� maxNN  as shown in
Figure 15.  The condition numbers maxC  for the uniformly spaced points drop greater than
15 orders of magnitude to a values now lower than that for the randomized calculation points.
Furthermore, the randomized case now exhibits some, though insignificant, sensitivity to
resolution, again increasing slightly with increasing resolution.
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Figure 10.  The error rmsE  for the gradient with uniformly spaced (             ) and randomized
(             ) calculation points, 50.0ε � , using a 1st order MLS fit.  The number of nearest
neighbors used is 7�N .
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Figure 11.  The condition number maxC  for the gradient with uniformly spaced (             )
and randomized (             ) calculation points, 50.0ε � , using a 1st order MLS fit.  The
number of nearest neighbors used is 7�N .
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Figure 12.  The error rmsE  for the gradient (             ) and Laplacian (             ) using a 2nd

order MLS fit.  The number of nearest neighbors used is 14�� minNN .  Results apply to
calculation points either uniformly spaced or randomized with 50.0ε � .
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Figure 13.  The condition number maxC  for uniformly spaced (             ) and randomized
(             ) calculation points, 50.0ε � , using a 2nd order MLS fit.  The number of nearest
neighbors used is 14�� minNN .
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Figure 14.  The error rmsE  for the gradient (             ) and Laplacian (             ) using a 2nd

order MLS fit.  The number of nearest neighbors used is 23�� maxNN .
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Figure 14(c).  The error rmsE  for the gradient (             ) and Laplacian (             ) using the
same parameters as those of Figure 14(b) with one exception: the number of nearest
neighbors used is 32�N .
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Figure 15.  The condition number maxC  for uniformly spaced (             ) and randomized
(             ) calculation points, 50.0ε � , using a 2nd order MLS fit.  The number of nearest
neighbors used is 23�� maxNN .
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For the 3rd order MLS fit using 40�� minNN , the order or accuracy has no
meaningful sensitivity to whether the calculation points are randomized.  Results for the
uniformly spaced calculation points and for randomized points are shown in Figure 16.
Comparing the 1st, 2nd and 3rd order MLS fits, for minNN �  the order of accuracy of all
derivative calculations generally becomes less sensitive to randomization of calculation point
positions as the number of nearest neighbors N increases.  The condition numbers maxC  for
the uniform and randomized cases, shown in Figure 16, are fairly constant.  Similar to the 2nd

order MLS fit results, the condition numbers for the uniformly spaced calculation points are
about 13 orders of magnitude greater than that for the randomized points, shown in Figure
17.  This difference in condition numbers maxC  is consistent with Figure 9 of the previous
subsection.  Using 76�� maxNN  the error rmsE  results change slightly, as shown in Figure
18.  For uniformly spaced calculation points, the gradient calculations have a 1.8 order
accuracy and the randomized points have a slightly lower 1.5 order accuracy.  The Laplacian
exhibits nearly 2nd order accuracy independent of calculation point randomization.  The 3rd

order gradient exhibits orders of accuracy of 3.6 and 3.2, respectively, for uniformly spaced
and randomized points.  The condition number values again change greatly when varying the
number of nearest neighbors used in the 3rd order MLS fit from 40�� minNN  to

76�� maxNN , as shown in Figure 19.  The condition number maxC  for the uniform case
drops about 14 orders of magnitude to values now lower than that for the randomized
calculation point case; in this 3rd order MLS fit, however, maxC  does not exhibit sensitivity to
resolution for either uniformly spaced or randomized calculation points.

As discussed in Subsection 3.2.1 (and will be further discussed in Subsection 3.2.4),

rmsE  error is not very sensitive to the ratio of the length scales 
δ
r  including those

corresponding to the changes in resolution sN .  For all MLS fits tested, the order of accuracy

is, therefore, attributed to the relative changes in the average spacing 
1

1
�

��

sN
x  given by

δ
x� , where δ  is used here as a convenient length scale representing the severity of the

function curvature.
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Figure 16.  The error rmsE  for the gradient (             ), Laplacian (             ) and 3rd order
gradient (             ) using a 3rd order MLS fit.  The number of nearest neighbors used is

40�� minNN .
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Figure 17.  The condition number maxC  for uniformly spaced (             ) and randomized
(             ) calculation points, 50.0ε � , using a 3rd order MLS fit.  The number of nearest
neighbors used is 40�� minNN .
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Figure 18.  The error rmsE  for the gradient (             ), Laplacian (             ) and 3rd order
gradient (             ) using a 3rd order MLS fit.  The number of nearest neighbors used is

76�� maxNN .

(a)
uniformly

spaced
points

(b)
randomized

points
50.0ε �



39

Ns

20 40 60 80 100

200

400

600

800
1000

Cmax

10
100

Figure 19.  The condition number maxC  for uniformly spaced (             ) and randomized
(             ) calculation points, 50.0ε � , using a 3rd order MLS fit.  The number of nearest
neighbors used is 76�� maxNN .

Subsection Summary

 (i) For an hth order MLS fit, the nominal order of accuracy for approximation of a jth order
gradient is roughly � �1�� jh .  (ii) The observed orders of accuracy are due to the ratio of

changes of average point spacing to a measure of the severity of function curvature 
δ
x� .  (iii)

A broad trend is observed in which the order of accuracy of derivative calculation becomes
less sensitive to randomization of points as the number of nearest neighbors N used in the
MLS fits increases.  (iv) The order of accuracy is either unchanged or slightly improved for
an MLS fit using either (a) more nearest neighbors in the range maxmin NNN ��  or (b)

uniformly spaced calculation points; (v) the condition number maxC  exceeds 1610  indicating
the coefficient matrix is ill-conditioned for the 2nd and 3rd order MLS fits using uniformly
spaced calculation points and minN  nearest neighbors; (vi) the condition numbers maxC  are

bounded to 1210��maxC  and are almost constant for an MLS fit using randomized
calculation point locations.
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3.2.3   Scaled isolation distance D .

Inspection of the maximum condition number maxC  used throughout this report
shows that this maximum consistently occurs at the “corners” of the 111 ��  test volume.
That is, the condition number is greatest at the “most isolated” points.  These corner points
also have a one-sided symmetry.  The isolation of and symmetry about a point are explored
by investigating the error rmsE  and the maximum condition number maxC  for various
isolated points with and without function symmetry about them.  “Externally” isolated points
and “internally” isolated points are investigated using the test arrangements depicted,
respectively, in Figures 20 and 21.  Shown in each of these figures are uniformly spaced
“bulk” calculation points and a single isolated point placed “on-center” in a location of
symmetry.  The bulk calculation points have an average local spacing x� ; the isolated points
do not.  For isolated points the “scaled isolation distance” is used, defined as the distance
between an isolated calculation point and the nearest neighbor.  This distance is measured as
a multiple D times the average bulk calculation point spacing x� .  The isolated points in
Figures 20 and 21 are shown at a scaled isolation distance 5�D .  The number and
arrangement of bulk calculation points used in isolated external point tests is a 313116 ��

block of points and for the isolated internal point tests the number and arrangement of the
bulk calculation points is 313131 ��  with a 3)12( �D  block of points removed.  In various
indicated tests, all points other than the isolated point are also randomized with maximum
perturbation ε  as described earlier in this report.  Isolated external points termed “off-center”
are not placed in positions of symmetry; they are offset from the 5.0�y  line by a distance D
along the x-axis and 2D along the z-axis.  Isolated internal points not placed in positions of
symmetry are offset from the point )5.0,5.0,5.0(),,( �zyx  by a distance D along the x-axis
and 2D along the y-axis and 3D along the z-axis.

All tests in this subsection use a 2nd order MLS fit with resolution given by 31�sN .
As with previous tests, the SVD solver is used except where indicated.

Figures 22 and 23 show the condition number maxC  and error rmsE  for the gradient
and Laplacian calculations with the number of nearest neighbors 23�� maxNN  used in the
MLS fit.  The isolated points in these figures are external, either on-center or off-center, and
the calculation points are uniformly spaced.  The scales of these figures are the same as those
of related figures presented later to provide for direct comparison.  Results show the
condition number sharply increases as the scaled isolation distance D increases beyond the
value of unity.  The error rmsE  remains fairly constant at about 210� .  Using the GJE solver
(results not shown) rather than the SVD solver for the on-center calculations shown in Figure
22, yields rmsE  errors of the same value at 1�D .  As the condition number maxC  sharply

increases, the rmsE  errors grow for the GJE calculated values (to approximately 2104 �

�  at
3�D ) and then fails (at 4�D ).
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Figure 20.  Depiction of the external centered isolated point showing uniformly spaced bulk
calculation points and scaled isolation distance 5�D .
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Figure 21.  Depiction of the internal centered isolated point showing uniformly spaced bulk
calculation points and scaled isolation distance 5�D .
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Figure 22.  The condition number maxC  (             ) and error rmsE  for the gradient (             )
and Laplacian (             ) with 23�� maxNN .  Bulk calculation points are uniformly spaced.
The isolated point is external, on-center.
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Figure 23.  The condition number maxC  (             ) and error rmsE  for the gradient (             )
and Laplacian (             ) with 23�� maxNN .  Bulk calculation points are uniformly spaced.
The isolated point is external, off-center.
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The results for the on-center or off-center isolated points are in close agreement.  This
agreement is observed in all external and internal isolated point tests considered supporting a
conclusion that function symmetry does not contribute to maxC  in these or previous tests.
Henceforward, only the symmetrical on-center test results will be shown and these will be
discussed simply as results of isolated point tests, it being understood that the presented
results are very similar to those of the off-center tests.

Results for bulk calculation points greatly randomized )50.0(ε �  or minimally
randomized )05.0(ε �  are shown respectively in Figures 24 and 25.  In these figures, error

rmsE  values are similar in magnitude (though the errors in the gradient and Laplacian
calculations switch places) to those for the uniformly spaced bulk points; rmsE  is not
sensitive to the degree of randomization.  Consistent with previous tests in this report, the
randomization of the bulk calculation points greatly reduces the condition number values
with the result that maxC  values become bounded to 1210��maxC  over the tested range of D.

The effects of varying the scaled isolation distance D when using a reduced number
of nearest neighbors 14�� minNN  are shown in Figure 26.  There is a small increase in the
error rmsE  of the gradient and the Laplacian calculation for uniform or randomized bulk
calculation points.  The condition numbers of the MLS coefficient matrix become ill-
conditioned for uniformly spaced calculation points beginning at scaled isolation distance

1�D  using 14�� minNN  nearest neighbors rather than 1�D  using 23�� maxNN ; this
is a distinction of trivial practical importance.  Using randomized calculation points, no
meaningful changes in the condition numbers maxC  are evident for 14�� minNN  versus

23�� maxNN .

Using uniformly spaced points and 23�� maxNN , results for the internally isolated
point are shown in Figure 27.  The condition number is constant with 18�maxC .  The error

fluctuates somewhat with changing D but never departs appreciably from 210�

�rmsE .  For
randomized bulk calculation points, the condition number and error results are fairly
insensitive to randomization of the points for internally isolated points.
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Figure 24.  The condition number maxC  (             ) and error rmsE  for the gradient (             )
and Laplacian (             ) with 23�� maxNN .  Bulk calculation points are randomized,

50.0ε � .  The isolated point is external.
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Figure 25.  The condition number maxC  (             ) and error rmsE  for the gradient (             )
and Laplacian (             ) with 23�� maxNN .   Bulk calculation points are randomized,

05.0ε � .  The isolated point is external.
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Figure 26.  The condition number maxC  (             ) and error rmsE  for the gradient (             )
and Laplacian (             ) with 14�� minNN .  The isolated point is external.
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Figure 27.  The condition number maxC  (             ) and error rmsE  for the gradient (             )
and Laplacian (             ) with 23�� maxNN .  The isolated point is internal.
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Subsection Summary

Over a wide range of scaled isolation distances 101 �� D : (i) for uniformly spaced
bulk calculation points and any externally isolated point, the MLS coefficient matrix should
be considered ill-conditioned; (ii) there is no practical difference in the magnitude or trend of
the condition numbers maxC  and only a small increase in errors rmsE  when isolated points
are present, with one exception―for externally isolated points, the condition numbers maxC

are highly sensitive to whether bulk calculation point locations are uniformly spaced or
randomized, while for internally isolated points the condition numbers are bounded to

1210��maxC  and nearly independent of randomization; (iii) for isolated points, the error

rmsE  is not sensitive to whether bulk calculation points are spaced uniformly or randomly;
(iv) for isolated points, the error rmsE  and the condition number maxC  are not sensitive to the
degree of randomization ε , nor to the number of nearest neighbors within the range

maxmin NNN �� , nor to whether there is function symmetry about the point.
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3.2.4  Gaussian Radius � .

Decreasing the Gaussian diameter δ  given by equation (17) narrows the test function
f as shown in Figure 28 and narrows higher orders of the gradients of f exponentially.  The
ratio of the “wave amplitude” to “wave width” �  measures the severity of the curves in
these functions and is summarized in Table 3.

x
0 0.25 0.5 0.75 1

0

0.2

0.4

0.6

0.8

1

1.2

f

Figure 28.  Test function values along the x-axis for 005.0δ2
�  (             ), 015.0δ2

�

(             ), 025.0δ2
�  (             ) and 035.0δ2

�  (             ).

f f� f2
�

005.δ2
�

4 24 4800

015.δ2
�

2 15 1200

025.δ2
�

1.5 12 480

035.δ2
�

1 10 325

Table 3. Severity of function curves measured by the ratio �  of wave amplitude to width.
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A 2nd order MLS fit using the SVD solver with resolution given by 31�sN  and with
number of nearest neighbors 23�� maxNN  is used to study the effects of varying δ  in the
tests that follow.  In all tests, results are presented for uniformly spaced calculation points.
The gradient results are first reviewed.  Beginning with 035.0δ2

� , Figure 29 shows very
good agreement between the analytical and calculated solutions.

The condition numbers are constant with 18�maxC  for the series of tests shown in
Figures 29 through 32.  This value is the same as that of the tests presented previously: the
condition numbers are not sensitive to the value of δ  or equivalently the value of �  over the
range tested.

Considering 025.0δ2
� , a slight smoothing of the function peaks, the region of

greatest curvature, is evident in Figure 30.  This behavior becomes more evident in Figure 31
with 015.0δ2

�  and Figure 32 with 005.0δ2
�  in large part because as the radius decreases

the peak amplitude of the derivative function increases; the error rmsE  is an rms error scaled
to this amplitude and is not necessarily increasing and cannot be well estimated by eye.  The
results of rmsE  error versus the radius δ  are presented later.  In Figure 32, close inspection
shows that in addition to the peaks being smoothed and reduced in magnitude, the widths of
the curves are being smoothed and broadened.

The Laplacian calculation results are presented for the same values of δ  in Figures 33
through 36.  The trend of peak reduction is plainly evident and that of width broadening is
discernable.  As for the 1st order gradient results, the scaled error rmsE  cannot be well
estimated by eye in these figures and results of rmsE  error versus the radius δ  are presented
later.

For comparison of these results, a maximum error maxE  is defined as

� � � �� �
� � �

�
�

�
�
� ��

	
i

ii
max g

gg
E

x
xx

�

��ABS
MAX . (20)

where g  and g �  represent the analytic and calculated values, respectively, of f�  or

f2
� .  The decrease in errors rmsE  and maxE  with the increase in the Gaussian test function
radius δ  is summarized in Figure 37 for uniformly spaced calculation points in graph (a) and
for randomized calculation points in graph (b).  There is little sensitivity to δ ; the change in

rmsE  error with decreasing δ  is nearly zero in all cases.  For randomized calculation point
locations, the error in the 2nd order MLS fit for the Laplacian calculation actually decreases
marginally with decreasing δ .  For the tests in this section, the representative radius r of the
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MLS window size, cf. equation (19), is a constant value � �058773.0�r  set by the values
23�N  and 31�sN ; hence, these results agree with those of Subsection 3.2.1, further

supporting the conclusion that there is little sensitivity of rmsE  error to the relative size of the

MLS window as represented by the ratio of the length scales 
δ
r , where r is the effective

radius of MLS window and δ  is used as a convenient length scale representing the severity

of the function curvature.  The error maxE , however, shows sensitivity to 
δ
r  and, with the

chosen value of 23�N , to whether or not the calculation points are randomized.  All
calculated maxE  errors were found to be located at locations of highest curvature, as
expected.  Hence, the errors associated with a function shape are localized to regions of high
curvature and result from the approximation reducing the severity of the curvature.

The changes in error that can be most evidently observed in maxE  are a result of the

changes in the dimensionless ratio 
δ
x� , the ratio of average point spacing to a convenient

measure of the severity of function curvature.  These results are consistent with the resolution
test results of Subsection 3.2.2 in which observed orders of accuracy are attributed to this
same ratio of length scales.

x
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Figure 29.  The analytical solution (             ) on the x-axis and a thin center slice of the
gradient values calculated (    ) using a 2nd order MLS fit on the test function f with

035.0δ2
� .
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Figure 30.  The analytical solution (             ) on the x-axis and a thin center slice of the
gradient values calculated (    ) using a 2nd order MLS fit on the test function f with

025.0δ2
� .
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Figure 31.  The analytical solution (             ) on the x-axis and a thin center slice of the
gradient values calculated (    ) using a 2nd order MLS fit on the test function f with

015.0δ2
� .
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Figure 32.  The analytical solution (              ) on the x-axis and a thin center slice of the
gradient values calculated (    ) using a 2nd order MLS fit on the test function f with

005.0δ2
� .
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Figure 33.  The analytical solution (             ) on the x-axis and a thin center slice of the
Laplacian values calculated (    ) using a 2nd order MLS fit on the test function f with

035.0δ2
� .



53

x
0 0.25 0.5 0.75 1

-300

-200

-100

0

100

�
2 f

Figure 34.  The analytical solution (             ) on the x-axis and a thin center slice of the
Laplacian values calculated (    ) using a 2nd order MLS fit on the test function f with

025.0δ2
� .
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Figure 35.  The analytical solution (             ) on the x-axis and a thin center slice of the
Laplacian values calculated (    ) using a 2nd order MLS fit on the test function f with

015.0δ2
� .
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Figure 36.  The analytical solution (             ) on the x-axis and a thin center slice of the
Laplacian values calculated (    ) using a 2nd order MLS fit on the test function f with

005.0δ2
� .
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Figure 37.  Errors in the gradient calculation ( maxE :             ; rmsE :             ) and in the
Laplacian calculation ( maxE :             ; rmsE :             ) using a 2nd order MLS fit.
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Subsection Summary

 (i) Error maxE  increases with increasing severity of function curvature and  (ii) maxE

tends to be localized to regions of high function curvature with the approximation reducing
the severity of the curvature; (iii) because the maxE  error may be very localized, rmsE  may
be only weakly dependent on function curvature.



57

3.2.5  Execution Time

The algorithm to perform MLS calculations can conveniently be divided into a
nearest neighbors list creation module, independent of the solver used, and a coefficient
matrix solver module.  The execution times of these algorithm modules are presented in this
subsection.  All timing tests are performed on a dedicated SUN ultra-2 workstation.  A 2nd

order MLS fit and randomized calculation points with 50.0ε �  are used in all cases tested in
this subsection.  All results are presented in seconds.

In the nearest neighbors list creation module for this report, calculation points are first
sorted into lists in each Cartesian direction using a binary search procedure.  The number of
numerical operations per calculation point in this sort is proportional to Nlog  [16] such that
the total number of operations is proportional to NN log  (equivalent to order 1.16 for

62 1010 �� N ).  Timing results presented in Figure 38 are consistent with this estimate of
numerical operations.  The spatially sorted lists are next used in creating sorted nearest
neighbors lists about each calculation point.  The total run time required to create these
nearest neighbors lists using 14�N  is shown in Figure 39.  The total run time is
proportional to � �3log NN ; hence, the number of numerical operations per calculation point

is proportional to � �3log N .

Within the solver module, the MLS coefficient matrix must be solved once for each
calculation point.  This leads directly to the results shown for the SVD and the GJE solvers
versus the total number of points N  in Figure 40; the total run time is proportional to N  but
the SVD solver requires approximately 4 times the total run time of the GJE solver.

Now, to come full circle and fully satisfy one of the opening sentences for the
application tests in this report, “The first (and last) consideration in this application is
choosing the number of nearest neighbors N,” the execution time versus N is examined.  A
resolution given by 21�sN  )9261( �N  and randomized calculation points with 50.0ε �
are used in the following tests.  The calculation points sorting time is independent of the
number of nearest neighbors N and results of Figure 38 still apply.  The total run time to

create the nearest neighbors list is proportional to 
2
N  as shown in Figure 41.  This is a small

price to pay: the list creation total run time for this 2nd order MLS fit for 23�� maxNN  is
only approximately 30% longer than that for 14�� minNN .  Figure 42 shows the execution
time required by each of the SVD and the GJE solvers versus N.  The total run time for the
SVD solver is proportional to 9.0N  and the total run time for the GJE solver is proportional
to 4.0N .
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Figure 38.  Total time required to sort the calculation points N .
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Figure 40.  Total time required by the SVD solver (            ) and by the GJE solver (            ).
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Figure 42.  Total time required by the SVD solver (            ) and by the GJE solver (            ).

Using the results of this subsection, by way of example, when doubling the number of
calculations points in the nearest neighbors used in the MLS fit the total execution time
(including the sort, nearest neighbors list and matrix solution) increases by a factor of 2.8
using SVD solver and by a factor of 1.8 using the GJE solver.  The total execution time for

21�sN  and 14�� minNN  is approximately 21 seconds using the SVD solver and
approximately 7 seconds using the GJE solver.  Increasing the number of nearest neighbors
used in the MLS fit to 23�� maxNN , the approximate execution times are, respectively, 32
and 8 seconds.

Ultimately, selection of the number of nearest neighbors N to be used depends on
only two considerations: on whether point spacing is locally randomized everywhere and on
the order of MLS fit required.  These points are considered in detail in the following section.

Subsection Summary

 (i) The total time required by any linear equation solver used in the MLS approach
runs in order N  time; that is, in linear time with respect to N . (ii) The total time required to
generate the nearest neighbors lists is of the same order as that required by the linear equation
solver. (iii) The increased execution time associated with an increased number of nearest
neighbors N is relatively small. (iv) The SVD solver requires approximately 4 times the
execution time of the GJE solver.
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4 SUMMARY

This paper presents an MLS formulation for multi-dimensional applications and
presents a detailed investigation of a three-dimensional MLS application including errors in
the approximation of 1st, 2nd and 3rd order derivatives.  The existing technical literature does
not include either extensive application analyses or analytical error bounds for MLS
approximations of multi-dimensional functions or their derivatives.

Results in this report show that the order of the conserved moment of a functional in a
minimization approach such as MLS does not equal the order of accuracy of the
approximation.  The summary given in Table 4 shows the nominal order of accuracy for an
hth order MLS fit approximating a jth order gradient is roughly � �1�� jh .  These observed
orders of accuracy result from changes in the ratio of average point spacing x�  to a
convenient measure of the severity of function curvature such as δ .

MLS
Order of Fit

h

�f �
2f �

3f

rmsE Order of
Accuracy

rmsE Order of
Accuracy

rmsE Order of
Accuracy

1 10-2 1

2 10-2 - 10-3 2 10-2 1.5

3 10-3 - 10-4 3 10-2 - 10-3 2 10-1 - 10-2 1+

Table 4.  Summary of the typical rmsE  error and the nominal order of accuracy for the MLS
application tests in this report.

The SVD solver is required for an MLS fit performed using double-precision
calculations only if the number of nearest neighbors is not strictly controllable or if spacing
of the calculation points is uniform.  For the MLS fits in this report, the use of an SVD solver
is never required if the calculation points are even minimally randomized.  Furthermore, even
combinations of extreme conditions considered do not indicate that SVD is required.  For
example, Table 5 summarizes conditions and results calculated using the GJE and SVD
solvers to approximate a severely narrow function (small Gaussian test function radius δ
corresponding with large wave amplitude to wave width ratio � ) with low resolution (small
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value of sN  corresponding to a small value of N ), using few nearest neighbors (small value
of N) with minimum randomization of the calculation point positions (small value of the
maximum perturbation ε ), and including an externally isolated point (with a value of the
scaled isolation distance D at which GJE fails for uniformly spaced calculations points).  As
expected, both the condition number and the error in the calculations for such extreme
conditions are high; nonetheless, results of the GJE and SVD solvers are identical to 5
decimal places and the GJE solver does not fail.

Calculation Results Extreme Parameter Values

maxC
rmsE

f�

rmsE

f2
�

δ  / � sN  / N ε D

GJE 1.050989 1.125372

SVD

4106�

1.050990 1.125372

05.0  / 4800 21 / 9261 01.0 4

Table 5.  An example of nearly identical calculation results using the GJE and SVD linear
equation solvers under extreme conditions.

The question of how many nearest neighbors N to use can now be addressed with
some certainty.  If the calculation point spacing is randomized everywhere then only the
chosen order of MLS fit determines N.  The requirement of irregularly spaced points
precludes the use of interpolation, in whole or part, of the function space onto a regular grid.
For example, this rules out an approach to ensure high resolution of a boundary layer by
using an Eulerian-Lagrangian scheme in which calculation points are interpolated onto a
uniform grid.  If the randomness of point spacing is guaranteed, then a direct solver such as
GJE can be considered.  Using such a solver requires more nearest neighbors N in the fit to
ensure that the solver will never fail as the condition number increases due to redundant
equations in the MLS coefficient matrix (particularly at higher orders of MLS fit).  However,
presented test results show that using additional nearest neighbors, say maxN  versus minN  or
even maxNN � , is acceptable: there is little sensitivity of rmsE  error to N (including the

corresponding changes in the MLS relative window size given by 
δ
r ); for minNN � , an

increase in N shows a reduced sensitivity to randomization of points and an increase in order
of accuracy; there is only a small penalty in total run time for an increase in N yet a direct
solver will still execute many times faster than the SVD solver.  For example, the direct LU
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decomposition linear equation solver executes in approximately 31  the time of the GJE
solver [15] and so will execute nominally 12 times faster than that SVD solver using the
same number of nearest neighbors.  Finally, using randomized points, the order of the MLS
fit to use depends principally on the order of accuracy required.  If a roughly 1.5 order of
accuracy is acceptable, a 2nd order fit suffices.  For any order fit, a conservative number of
nearest neighbors to use would then be NNmax � .

If the calculation point spacing is not randomized everywhere or if the number of
nearest neighbors cannot be specified, the SVD solver may be required.  The number of
nearest neighbors might not be able to be specified if nearest neighbors are selected from a
list (such as a limited connectivity list) generated for other purposes.  In such cases, even for
randomized calculation point locations, if N falls below the value of minN  the SVD solver
yields results with errors on the order of the peak function value being approximated, though
the solver will not fail.

The issue arises whether perhaps the best computational approach is to evaluate the
condition number prior to each matrix solution and then to conditionally execute a fast direct
solver or the SVD solver.  Unfortunately, evaluation of the condition number requires a
decomposition of the matrix requiring run time approaching that of the SVD solver.

While condition number maxC  and error rmsE  values are critically sensitive to
whether the calculation point positions are uniformly spaced or randomly spaced, these
values are not very sensitive to the degree of randomization.  These values are also not very
sensitive to the scaled isolation distance D of a calculation point.  Sensitivity to increasing
severity �  of curves produces errors localized to regions of high curvature in the function
being approximated such that the approximated curve peaks are reduced in magnitude and
the curve widths are broadened.

A broad result is observed for the MLS approach, which may apply to residual
minimization approaches in general: compared to calculations using uniformly spaced points,
calculations using randomized calculation points can yield both greater accuracy as measured
by rmsE  and greater stability as measured by maxC .
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